Some ways to reduce the space dimension in polyhedra computations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some ways to reduce the space dimension in polyhedra computations

Convex polyhedra are often used to approximate sets of states of programs involving numerical variables. The manipulation of convex polyhedra relies on the so-called double description, consisting of viewing a polyhedron both as the set of solutions of a system of linear inequalities, and as the convex hull of a system of generators, i.e., a set of vertices and rays. The cost of these manipulat...

متن کامل

Configuration Space Computations for Polyhedra With Planar Motions

This report describes an algoriUun thal computes the configuration space of a polyhedron willi planar motion relative La a fixed polyhedral obstacle. The algorilJlm decomposes the configuration space along Ule orienlation axis into intervals of cross-sections with the same structure. It computes the angles where the srrucrurc changes. In each interval between two changes, it computes the (fi:'\...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Computations in Space and Space in Computations

The emergence of terms like natural computing, mimetic computing, parallel problem solving from nature, bio-inspired computing, neurocomputing, evolutionary computing, etc., shows the never ending interest of the computer scientists for the use of “natural phenomena” as “problem solving devices” or more generally, as a fruitful source of inspiration to develop new programming paradigms. It is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formal Methods in System Design

سال: 2006

ISSN: 0925-9856,1572-8102

DOI: 10.1007/s10703-006-0013-2